日時: 2020年 8月24日(月) 14:00~16:00 全国高等学校通信制教育研究会 第2回全通研学習書研修会

3

遠隔教育と教育工学

森田 裕介 早稲田大学人間科学学術院 教授 大学総合研究センター 副所長

1

本日の内容

遠隔教育における教育工学研究

- 遠隔教育(教師中心)からオンライン学習(学習者中心)へ
- 遠隔教育における教育工学研究の事例

• オンライン授業の現状と課題

教育xテクノロジーの現状と今後

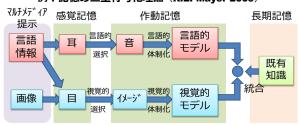
- 教育観・学習観の変遷とインストラクショナルデザイン
- 教育のデジタルトランスフォーメーション

2

4

6

教育工学 Educational Technology


理論:インストラクショナルデザイン

eラーニングの質	達成指標	主なID技法
レベル 3 : 学びたさ	継続的な学習意欲,没入感,将来像とのつながり,	動機付け設計法(ARCSモデル)
(魅力の要件)	自己選択,自己責任,こだわり	成人学習学の原則
レベル2:学びやすさ (学習効果の要件)	学習課題の特性に応じた学習環境,学習者ニーズ にマッチした学習支援要素,共同体の学び合い, 自己調整学習,適応的環境	学習支援設計法 (ガニェの9教授事象) 構造化・系列化技法 ISM構造
レベル1:わかりやすさ	操作性, ユーザビリティ, ナビゲーション,	プロトタイピング 学習法
(情報デザインの要件)	レイアウト, テクニカルライティング	形成的評価技法
レベル 0 : ムダのなさ	内容の正確さ,取り扱い範囲の妥当性,	ニーズ分析法
(SME的要件)	解釈の妥当性,多様性の提示,情報の新しさ,	内容分析法
SME: Subject Matter Expert	根拠や確からしさの提示,適正な著作権処理	職務分析法
レベル-1:いらつきの なさ(精神衛生上要件)	安定したアクセス環境 , 十分な回線速度	学習環境分析 メディア選択技法

参考: 鈴木克明 監修 (2016) 「インストラクショナルデザインの道具箱101|

理論:認知心理学

例:記憶の二重符号化理論(R.E. Mayer 2009)



理論:学習科学

5

教育工学研究の視座

テクノロジープッシュ

- 新しい技術の教育導入の提案
- 学習効果を高める授業デザインの提案

新しいテクノロジーから着想

森田裕介 (2012) 教育システム・ツールの開発研究の方法,「教育工学研究の方法」127-142

遠隔教育における 教育工学研究

教科書 学習書

オンライン化

- 1. 通信教育(教師中心)からオンライン学習(学習者中心)へ2. 遠隔教育における教育工学研究の事例

遠隔教育に関わる用語の整理(暫定)

- 通信教育 (Independent Study or Correspondent Study)
- 遠隔教育 (Distance Education) (1990年代)
 - 遠隔授業 (Distance Teaching)
 - 遠隔学習(**Distance Learning**)・・・学生主体
- eラーニング (2000年代~2010年代前半)
 - WBL (Web Based Learning)
- オンライン授業/学習(2010年代後半)
 - オンデマンド授業(非同期型) ・・・教師主体
 - リアルタイム授業(同期型・ライブ)・・・教師主体

 - オンライン学習(非同期・同期の双方を含む)・・・学生主体

1. 通信教育からオンライン学習へ

- ・ 1880年代~ 印刷物を用いた通信教育(廣木2016を参照) <
 - 「講義録」教ゆるにも亦(ま)た術多かり
- ・ 1950年代~ 放送を利用した遠隔教育 (宇治橋2019を参照)
 - ラジオ第2で『NHK高等学校講座』全国放送(1953.4)
 - 教育テレビで『高等学校講座』放送開始(1959.1)
 - 通信制高校生向け『高等学校講座』放送開始(1960.4)
 - 『NHK高校講座』番組Webサイト開設(2003)
 - 『NHK高校講座』に「ベーシックシリーズ」開始(2009)
- ・ 1990年代〜 情報通信ネットワークを利用したオンライン学習 - オンラインユニバーシティ / バーチャルユニバーシティ(1995-2005)
- マサチューセッツ工科大がオープンコースウェアを提唱(2001) MOOCs(大規模公開オンライン講座)開始(2012)

10

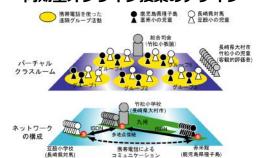
12

8

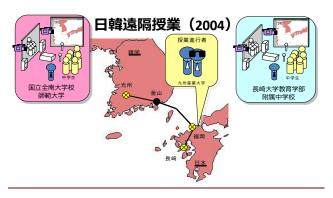
2. 遠隔教育における教育工学研究の例

システム・ツール開発

学習管理システム(LMS)


9

- ・遠隔授業・会議システム
- 協調学習(CSCL) ツール • 学習活動分析システム
- オンラインコンテンツの開発
- VRの技術を用いた理数科教材の開発
- ARの技術を用いたテキストの開発


- 学習内容の構造化・構造学習法
- PSI (個別化教授システム)
- 同期・非同期型授業のデザイン

- CAI (コンピュータ支援)
- 知的学習支援システム(ITS)
- 学習履歴データによる個別最適化

同期型オンライン授業のデザイン

11

「推測型Web教材」の開発とLMSの構築

森田 裕介・益子典文・曾根直人(2002)講義補完型WBTシステムの開発と現職教員を対象とした試用。 日本教育工学会論文誌, 26[Suppl.), 255-258.

13 14

Web-Based PSIコース

PSI: 個別化教授システム (Personalized System of Instruction)

- · Keller, F.S. (1968)
 - セルフペース学習内容のユニット分割
 - 子首内谷のユニットが制 (完全習得学習) 教授者=ファシリテータ-
 - コミュニケーションは すべて文書 (書き言葉)
 - 対面テストと学習者支援 を実施するプロクター

15

- ・ コンピュータ・プログラミング
- 一 印刷テキスト (C, MATLAB, and JAVA)オンラインコンテンツ
- コースの構成
- 14ユニットと4レビューテスト **プロクター**による レビューテスト実施
- コミュニケーション
- チャット+メール
- ライブカメラ ビデオクリップ

Morita,Y. et al. (2005) Pilot Study of the Relationships Between Learning Progress and Learning Style in a Web-Based PSI Course. Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, & Higher Education, 2243-2248.

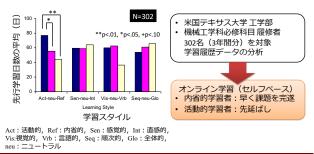
Progress Update ? Help (FAQ) Your Proctors 😝 Dr. Koen PSI The FIC Other Resources

Units: 00 01 02 03 R1 04 05 06 07 R2 08 09 10 R3 11 12 13 R4

Progress Update

学習履歴データ:学習進捗曲線

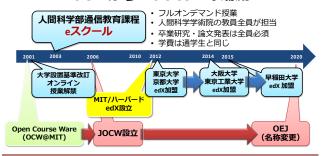
What's New


Chat

Readings Tests

Note the Bugs

16


学習の先延ばし日数の比較

- 学習分析学 (Learning Analytics) とMOOCs 学習分析:学習活動の履歴を収集・分析・報告・フィードバックする一連の行為 ・MOOCs(大規模公開オンライン講座)
- - **edX**: https://www.edx.org/
 2012年ハーバード大とMITが共同で立ち上げた無料オンライン講義のプロジェクト
 - Coursera: https://www.coursera.org/
 スタンフォード大学コンピュータサイエンスの教授らによって創立された営利団体
 - **教育ビッグデータ**の収集・分析 + フィードバック
 - 映像視聴履歴分析による学習者支援(機械学習を含む)
 - 破壊的イノベーションへの対応
 - 従来のものの価値を破壊し、新しい価値を生み出すイノベーション

17 18

OCWからMOOCsへの潮流

Engagementを高める方法

Guo (2014)を参考に森田が解釈したもの

得られた知見	オンライン授業の工夫
短いビデオのほうがよい	授業ビデオを6分未満に分割する
授業者の顔が見えてるほうがよい	教員は適切なタイミングで顔をだす
設備が整ったスタジオでの収録(費用がかか る)が効果的だとは限らない	カジュアルでもアイコンタクトする ビデオであれば効果的なビデオになる
PPTだけより手書きがあるほうがよい	手書きなど動きのある映像を含める
教室授業のライブ収録は効果的でない	教室収録の場合でもクリップ化する
自然に熱っぽく早口になるのはOK 間やフィラーは削除するほうがよい	教員は自身の熱い思いを表現する ゆっくり話す必要はない
講義映像とチュートリアル映像では 視聴のしかたが異なる	講義は最初が肝心. チュートリアルは再視聴と スキミングできるようにする

Guo, P.J. et al. (2014) How Video Production Affects Student Engagement: An Empirical Study of MOOC Videos. Proceedings of the first ACM conference on Learning, 41-50

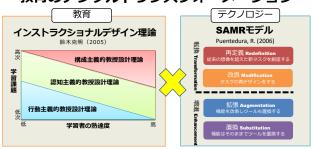
20

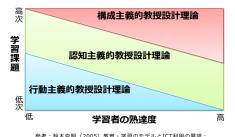
ディスカッション

- 1. ご自身のコロナ禍における取り組みの現状と気づき、 オンライン授業における課題(ご自身のスキルアップ、 知識修得、学校全体でやることなど)をシェアしてくだい。
- 2. どなたか一人は、メモをとってください。

19

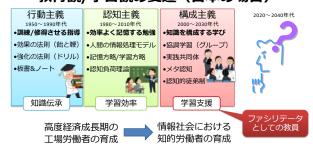
3. 時間があれば、ご意見を発表していただくかもしれません。


教育xテクノロジー の現状と今後


- 教育のデジタルトランスフォーメーション
 教育観の変遷とインストラクショナルデザイン

21 22

教育のデジタルトランスフォーメーション


学習者の熟達度と学習課題のデザイン

参考:鈴木克明 (2005) 教育・学習のモデルとICT利用の展望: 教授設計理論の視座から,教育システム情報学会誌, **22**(1), 42-53

23 24

教育観/学習観の変遷(日本の場合)

Copyright@Yusuke Morita 2020

25

SAMRモデルと通信制高校の授業

26

SAMRモデルと通信制高校の授業

- 「**主体的につながりの中で学ぶ**」 ・学校や授業はオプションでしかない
- ・人・モノ・情報のネットワークで学ぶ

「通信制でしかできない学びを!」

- ・他者と議論し自身と異なる視点を学ぶ
- ・学習履歴データによる個別最適化

「通信制高校の授業で学んでみよう!」 ・動画の見直しや倍速視聴で修得度UP

- ・オンラインの関連した情報で精緻化
- 「全日制の授業と同じよ
- ・授業の代わりに動画を試聴
- テストのために記憶

まとめ

遠隔教育における教育工学研究

- ・遠隔教育(教師中心)からオンライン学習(学習者中心)へ
- 遠隔教育における教育工学研究の事例

• オンライン授業の現状と課題

教育xテクノロジーの現状と今後

- 教育観・学習観の変遷とインストラクショナルデザイン
- 教育のデジタルトランスフォーメーション

28 27

ø

参考文献

- 藤木卓・森田 裕介・中村千秋(2002)携帯電話によるグループ別遠隔交流と多地点接続を用いた小学校道 徳授業の実践、日本教育工学会論文誌、26(Suppl.)、249-254. Guo et al. (2014) Guo, P.J. et al. (2014) How Video Production Affects Student Engagement: An Empirical Study of MOOC Videos. Proceedings of the first ACM conference on Learning 41-50
- 廣木尚(2016)「早稲田の通信講義録とその時代 1886-1956」展に寄せて https://yab.yomiuri.co.ip/adv/wol/culture/160309.html
- Morita, Y. et al. (2005) Pilot Study of the Relationships Between Learning Progress and Learning Style in a Web-Based PSI Course. Proceedings of World Conference on E-Learning in Corporate,
- 森田 裕介・益子典文・曾根直人(2002)講義補完型WBTシステムの開発と現職教員を対象とした試用,日本教育工学会論文誌, 26(Suppl.), 255-258.
- 森田 裕介・藤木卓・全 炳徳・李相秀・上蘭恒太郎・渡辺健次・下川俊彦・柳生大輔・中村千秋 (2004) 日 韓遠隔授業における中学生の国際性の変容に関する一分析, 日本教育工学会論文誌, 28(Suppl.), 197-200.
- 森田裕介、豚島宏彰、瀬戸崎典夫、岩崎 贄(2011)デジタル教材を豊豊提示する天体学習用ARデキストの 開発と評価。日本教育工学会論文誌、35(Suppl.)、81-84. 森田裕介 (2012) 教育システム・ツールの開発研究の方法、「教育工学研究の方法」127-142 Puentedura, R. (2006) Transformation, Technology, and Education http://hippassys.com/resources/tise/
- 鈴木克明ほか(2016)インストラクショナルデザインの道具箱101,北大路出版 宇治橋祐之 (2019) 高校講座, 語学番組の変遷, 放送研究と調査, 52-75